skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhan, Qiwen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Structural color utilizing microscale concave interfaces has been reported in several publications, but the explanation is currently incomplete. Within this work, the physics behind this coloration technique is clarified using multiple light sources and simulations. 
    more » « less
  2. We demonstrate an opto-thermomechanical (OTM) nanoprinting method that allows us not only to additively print nanostructures with sub-100 nm accuracy but also to correct printing errors for nanorepairing under ambient conditions. Different from other existing nanoprinting methods, this method works when a nanoparticle on the surface of a soft substrate is illuminated by a continuous-wave (cw) laser beam in a gaseous environment. The laser heats the nanoparticle and induces a rapid thermal expansion of the soft substrate. This thermal expansion can either release a nanoparticle from the soft surface for nanorepairing or transfer it additively to another surface in the presence of optical forces for nanoprinting with sub-100 nm accuracy. Details of the printing mechanism and parameters that affect the printing accuracy are investigated. This additive OTM nanoprinting technique paves the way for rapid and affordable additive manufacturing or 3D printing at the nanoscale under ambient conditions. 
    more » « less
  3. Phase change material Ge2Sb2Te5 tilted and helical nanorods films featuring 25 nm diameters are grown using the oblique and glancing angle deposition techniques. We provide insights on the growth process, structural integrity and optical responses 
    more » « less